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The overshooting phenomenon under the effect of the microscopic hyperbolic
heat conduction model is investigated. A map tracing the region within which
the overshooting phenomenon occurs is presented. The two most important
parameters which control the overshooting phenomenon are found to be the
first and second time-derivatives of the temperature at t=0. However, in order
for the overshooting to appear, a higher initial value of the second time-deriva-
tive of the temperature change is required than the initial value of the first time-
derivative of the temperature. Overshooting is more likely to appear in the
parabolic, rather than in the hyperbolic, microscopic heat conduction model.

KEY WORDS: hyperbolic microscopic model; microscopic heat conduction;
overshooting; two-step hyperbolic model; two-step heat conduction model.

1. INTRODUCTION

Temperature overshooting is concerned with the excess temperature estab-
lished in a conducting medium when two thermal wavefronts meet. The
overshooting phenomenon implies the possibility of finding locations
within the heated domain which have temperatures higher than the
imposed boundary temperature at the wall. This phenomenon may occur in
domains exposed to sudden changes in their wall temperature, if the
domain has non-zero initial temperature time gradient, “T

“t (0, x)=Ṫo, and if



the thermal behavior of such a domain is described by heat conduction
models other than the classical parabolic (diffusion) heat conduction
model. Examples of these models are the hyperbolic, the dual-phase-lag
and the microscopic models.

In the literature, the overshooting phenomenon has been investigated
under the effect of the macroscopic wave, macroscopic dual-phase-lag, and
microscopic parabolic heat conduction models [1–5]. The aim of the
present work is to investigate the overshooting phenomenon in the micro-
scopic hyperbolic heat conduction model. The parameters within which this
phenomenon may appear are investigated. An initial-condition map within
which this phenomenon is significant will be presented.

2. ANALYSIS

In a one-dimensional semi-infinite domain, the governing equations
for the hyperbolic microscopic heat conduction model are given as

Ce
“Te

“t
=−

“qe

“x
− G(Te − Tl) (1)

Cl
“Tl

“t
=G(Te − Tl) (2)

yF
“qe

“t
+K

“Te

“x
+qe=0 (3)

Equations (1)–(3) are combined to yield the following equation in terms
of Tl:

“
2T

“x2+
Cl

G
“

3T
“x2

“t
=yF

CeCl

KG
“

3T
“t3 +5yF(Ce+Cl)

K
+

CeCl

KG
6 “

2T
“t2 +5(Ce+Cl)

K
6 “T

“t
(4)

where T — Tl, where the subscript ‘‘l’’ is omitted for the sake of conve-
nience. The thermal disturbance in the medium is induced by a suddenly
imposed temperature at x=0. As a result, Eq. (4) has the following
boundary conditions:

T(t, 0)=Tw, T(t, x) Q To as x Q . (5)

In order for the overshooting behavior to appear, three initial conditions of
non-zero finite values must be provided. These initial conditions are given as

T(0, x)=To,
“T
“t

(0, x)=Ṫo,
“

2T
“t2 (0, x)=T̈o (6)
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Now, using the dimensionless parameters defined in the Nomenclature,
Eqs. (4)–(6) are rewritten as

“
2h

“d2+D1
“

3h

“d2
“y

=D2
“

3h

“y3+(1+D2)
“

2h

“y2+
“h

“y
(7)

h(y, 0)=1, h(y, d) Q 0 as d Q . (8)

h(0, d)=0,
“h

“y
(0, d)=ḣo,

“
2h

“y2 (0, d)=ḧo (9)

where

D1=
Cl

GyF
, D2=

CeCl

(Ce+Cl) yFG

Now, using the Laplace transformation technique, with the notation
L{h(y, d)}=W(s, d), Eqs. (7)–(9) assume the following solution:

W(s, d)=11
s
+

W

E
2 e−`E d −

W

E
(10)

where

W=−
sD2 ḣo+D2 ḧo+(1+D2) ḣo

1+D1s
,

E=
D2s3+(1+D2) s2+s

1+D1s

Equation (10) is inverted in terms of a Riemann–sum approximation
as [5]

h(y, d)=
ecy

y
51

2
W(c, d)+Re C

N

n=1
W 1c+

inp

y
, d2 (−1)n6 (11)

and for faster convergence of Eq. (11), it has been shown that c may be
obtained from [5]

cy=4.7 (12)
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3. RESULTS AND DISCUSSION

By tracing the spatial temperature distribution, as given in the inver-
sion of Eq. (10), at early times, it is found that there are locations in the
vicinity of the boundary which have temperatures larger than the imposed
boundary temperature. This is what called the overshooting phenomenon.

Figures 1 and 2 represent two maps specifying the operating condi-
tions within which the overshooting phenomenon may be observed. If the
problem under consideration assumes finite values for ḣo and ḧo such that
the location of this state is below the specified curve for the given values of
D1 and D2, then there is no possibility for the overshooting phenomenon to
appear at any location or time. On the other hand, if the location of this
state is above the curve, then this means that overshooting appears at
certain locations and times.

Figure 1 shows the effect of D2 on the overshooting map. It is clear
that overshooting occurs at higher values of ḧo, as compared to the values
of ḣo, especially at small values of D2. Also, it is clear that as D2 increases,
overshooting occurs at lower values of ḣo and ḧo. From its definition, D2

increases as yF decreases. In the limit as yF Q 0, then D2 Q .. However, as
yF Q 0, the microscopic hyperbolic conduction model is reduced to the

Fig. 1. A map for the overshooting phenomenon for different values of D2. D1=1000,
y=1.
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Fig. 2. A map for the overshooting phenomenon for different values of D1. D2=10, y=1.

microscopic parabolic model. This implies that the overshooting pheno-
menon has a higher probability to appear in the parabolic microscopic heat
conduction model than in the hyperbolic microscopic model. The effect of
D2 on the overshooting phenomenon is insignificant at large values of D2.

Figure 2 shows the effect of D1 on the overshooting phenomenon. As
D1 increases, overshooting appears at lower values of ḣo and ḧo. Also,
overshooting may appear at values of ḣo and ḧo having the same order of
magnitude. As D1 increases, the overshooting phenomenon is insensitive to
the variation in D1. From the results of Figs. 1 and 2, we may conclude that
overshooting appears when Ṫo

Tw − To
is of order of 1013s−1 and when T̈o

Tw − To
is of

order of 1026s−2. These two values represent extremely high initial time-
derivatives of temperature which are very difficult to be produced in prac-
tical applications. This is the main obstacle to obtaining the temperature
overshooting in the laboratory.

4. CONCLUDING REMARKS

The overshooting phenomenon in the microscopic hyperbolic heat
conduction model is investigated. A map is presented of the region within
which the overshooting phenomenon is significant. Four dimensionless
parameters are found to control the overshooting phenomenon. These
parameters are ḣo, ḧo, D1(= Cl

GyF
), and D2(= CeCl

(Ce+Cl) yFG). The overshooting
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phenomenon is enhanced as these four parameters increase. However, in
order for overshooting to appear, higher values of ḧo are required than the
values of ḣo. Also, overshooting has higher probability to appear in the
parabolic microscopic model than in the hyperbolic microscopic model.
Overshooting is difficult to observe in practical applications. This is due to
two requirements which are the extremely high initial first and second time-
derivatives of temperature and the very small spatial physical domain
which is very close to the atomic level.

NOMENCLATURE

C heat capacity, J · m−3 · K−1

G electron-phonon coupling factor, W · m−3 · K−1

i imaginary unit, ` − 1
K thermal conductivity, W · m−1 · K−1

q conduction heat flux, W · m−2

s Laplacian variable
t time, s
T temperature, K
Ṫo initial first time derivative of temperature, K · s−1

T̈o initial second time derivative of temperature, K · s−2

W Laplace transform of T
x spatial coordinate, m

Greek Symbols

a thermal diffusivity, K/(Ce+Cl)
d dimensionless space coordinate, x/`ayF

h dimensionless temperature, (T − To)/(Tw − To)
ḣo dimensionless initial first derivative of temperature,

(Ṫo − To)/(Tw − To)
ḧo dimensionless initial second derivative of temperature,

(T̈o − To)/(Tw − To)
y dimensionless time, t/yF

yF relaxation time evaluated at Fermi surface, s
yq relaxation time in heat flux, s
yT relaxation time in temperature, s

Subscripts

e electron
l lattice
o initial
w wall
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